MAC 2233
Business Calculus -- Waner
Chapter 7
Fall 2019

Name \qquad
Date
Day/Time: \qquad

To receive credit for correct answers, supporting work MUST be provided. Answers without supporting work will receive no credit. This exam is worth 100 points. Each problem is worth 5 points.

Find the area of the shaded region.

Provide an appropriate response.
2) Find the area bounded by the parabolas $y=6 x-x^{2}$ and $y=x^{2}-2 x$. (Round answer to three

1) \qquad

BONUS QUESTION: up to 5 points
Evaluate the improper integral. If the integral does not converge, state that the integral is divergent.
3) $\int_{0}^{\infty} \frac{3}{(x+1)^{2}} d x$
3) \qquad

Find the average value of the function on the given interval.
4) $f(x)=x^{2} e^{5 x} ;[0,4]$ Give your answer in exact form.
4) \qquad
A) $\frac{5}{2} e^{20}-\frac{1}{2}$
B) $\frac{181}{250} \mathrm{e}^{20}-\frac{1}{250}$
C) $\frac{362}{125} \mathrm{e}^{20}-\frac{2}{125}$
D) $\frac{181}{250} e^{20}$

Solve the problem.
5) The price per share of a stock can be approximated by the function $S(t)=t(24-3 t)+25$, where t is
5) \qquad time (in years) since the stock was purchased. Find the average price of the stock over the first 8 years.
A) $\$ 456.00$
B) $\$ 76.20$
C) $\$ 57.00$
D) $\$ 35.50$

The function represents the rate of flow of money in dollars per year. Assume a 10-year period and find the present value.
6) $f(x)=2000 x-130 x^{2}$ at 5% compounded continuously
6) \qquad
A) $\$ 102,089.58$
B) $\$ 1,303,820.61$
C) $\$ 42,236.84$
D) $\$ 2,602,236.84$
7) $f(x)=1000 e^{-0.04 x}$ at 8% compounded continuously
7)
A) $\$ 27,667.64$
B) $\$ 19,334.31$
C) $\$ 5823.38$
D) $\$ 10,843.29$

The function represents the rate of flow of money in dollars per year. Assume a 10-year period and find the accumulated amount of money flow at $\mathbf{t}=10$.
8) $f(x)=0.03 x+800$ at 5% compounded continuously
8) \qquad
A) $\$ 42,417.32$
B) $\$ 9437.57$
C) $\$ 8651.10$
D) $\$ 10,381.32$

Solve the problem.
9) The rate of a continuous money flow starts at $\$ 500$ and increases exponentially at 4% per year for
9) \qquad 10 years. Find the final amount if interest is earned at 8% compounded continuously.
A) $\$ 41,501.46$
B) $\$ 46,467.07$
C) $\$ 13,682.20$
D) $\$ 9171.45$
10) A money market fund has a continuous flow of money at a rate of $f(x)=1900 x-190 x^{2}$ for 10 years. 10) Find the final amount if interest is earned at 2% compounded continuously.
A) $\$ 28,681.85$
B) $\$ 23,482.71$
C) $\$ 31,666.67$
D) $\$ 35,032.09$

Find the consumer's surplus for the following demand function at the given point.
11) Find the consumers' surplus at a price level of $\bar{p}=\$ 7$ for the price-demand equation \qquad $\mathrm{p}=\mathrm{D}(\mathrm{x})=25-0.4 \mathrm{x}$.
A) $\$ 405$
B) $\$ 720$
C) $\$ 29,250$
D) $\$ 4050$

Find the producer's surplus for the following supply function at the given point.
12) Find the producers' surplus at a price level of $\bar{p}=\$ 30$ for the price-supply equation
12) $p=S(x)=14+0.0004 x^{2}$.

Solve the problem.

13) Find the equilibrium quantity if the price-demand equation is $p=D(x)=23-\frac{1}{20} x$, and the
14) price-supply equation is $p=S(x)=8+\frac{1}{8,000} x^{2}$.
A) 200
B) 13
C) $-600,200$
D) -600
15) Find the consumers' surplus and producers' surplus for $p=D(x)=71-\frac{1}{10} x$ and
16) \qquad $\mathrm{p}=\mathrm{S}(\mathrm{x})=35+\frac{1}{20} \mathrm{x}$.
A) $\mathrm{CS}=\$ 14,160$
B) $\mathrm{CS}=\$ 15,160$
C) $\mathrm{CS}=\$ 2880$
PS $=\$ 1440$
D) $\begin{aligned} \mathrm{CS} & =\$ 2880 \\ \mathrm{PS} & =\$ 1660\end{aligned}$

Evaluate using integration by parts.
15) $\int x^{4} \ln 8 x d x$
15) \qquad
A) $\frac{1}{5} x^{5} \ln 8 x-\frac{1}{25} x^{5}+C$
B) $\frac{1}{5} x^{5} \ln 8 x+\frac{1}{25} x^{5}+C$
C) $\frac{1}{5} x^{5} \ln 8 x-\frac{1}{30} x^{6}+C$
D) $\ln 8 x-\frac{1}{5} x^{5}+C$
16) $\int x^{2} e^{2 x} d x$
16) \qquad
A) $\frac{x^{2}}{2} e^{2 x}-x e^{2 x}+C$
B) $\frac{x^{2}}{2} e^{2 x}-2 x e^{2 x}+1+C$
C) $\frac{x^{2}}{2} e^{2 x}-2 x e^{2 x}+C$
D) $\frac{x^{2}}{2} e^{2 x}-\frac{x}{2} e^{2 x}+\frac{1}{4} e^{2 x}+C$

Evaluate using the substitution method.
17) $\int \frac{7 x^{6} d x}{\left(4+x^{7}\right)^{4}}$
17)
18) $\int \frac{13 e^{5 x} d x}{e^{5 x}+1}$
18)
19)
19) $\int \mathrm{x}^{4} \sqrt{\mathrm{x}^{5}+9} d x$

Evaluate. You MUST show all your work, processed without the use of a calculator.
20) $\int_{1}^{6} \frac{2 x+5}{x^{2}+5 x+1} d x$
20)
21) $\int_{0}^{1} 5 x^{4} e^{x^{5}} d x$
21)

