MAC 2233 Business Calculus -- Waner *Chapter* 7 *Fall* 2019

Name	
Date	
Day/Time: _	

1) _____

To receive credit for correct answers, supporting work MUST be provided. Answers without supporting work will receive no credit. This exam is worth 100 points. Each problem is worth 5 points.

Find the area of the shaded region.

Provide an appropriate response.

2) Find the area bounde	d by the parabolas $y = 6x$	$x - x^2$ and $y = x^2 - 2x$. (F	Round answer to three	2)
decimal places.)				
A) – 21.333	B) 21.333	C) 22	D) 21.667	

BONUS QUESTION: up to 5 points Evaluate the improper integral. If the integral does not converge, state that the integral is divergent.

3)
$$\int_0^\infty \frac{3}{(x+1)^2} dx$$
 3) _____

Find the average value of the function on the given interval. (1) $f(x) = x^2 e^{5X} [0, 4]$ Give your appropriate over the form

4)
$$f(x) = x^2 e^{5x}$$
; [0, 4] Give your answer in exact form.
A) $\frac{5}{2}e^{20} - \frac{1}{2}$
B) $\frac{181}{250}e^{20} - \frac{1}{250}$
C) $\frac{362}{125}e^{20} - \frac{2}{125}$
D) $\frac{181}{250}e^{20}$

Solve the problem. 5) The price per share of a stock can be approximated by the function S(t) = t(24 - 3t) + 25, where t is time (in years) since the stock was purchased. Find the average price of the stock over the first 8 years.

	A) \$456.00	B) \$76.20	C) \$57.00	D) \$35.50
--	-------------	------------	------------	------------

The function represents the rate of flow of money in dollars per year. Assume a 10-year period and find the present value.

6) $f(x) = 2000x - 130x^2$ at 5%	compounded continuou	sly		6)
A) \$102,089.58	B) \$1,303,820.61	C) \$42,236.84	D) \$2,602,236.84	

7) $f(x) = 1000e^{-0.04x}$ at 8%	compounded continuo	usly		7)
A) \$27,667.64	B) \$19,334.31	C) \$5823.38	D) \$10,843.29	

The function represents the rate of flow of money in dollars per year. Assume a 10-year period and find the accumulated amount of money flow at t = 10.

8) $f(x) = 0.03x + 800$ at 5%	compounded continuou	ısly		8)
A) \$42,417.32	B) \$9437.57	C) \$8651.10	D) \$10,381.32	

Solve the problem.

9) The rate of a continuou	s money flow starts at \$5	00 and increases exponent	ially at 4% per year for	9)
10 years. Find the final	amount if interest is earr	ned at 8% compounded co	ntinuously.	
A) \$41,501.46	B) \$46,467.07	C) \$13,682.20	D) \$9171.45	

10) A money market fund has a continuous flow of money at a rate of $f(x) = 1900x - 190x^2$ for 10 years.10)Find the final amount if interest is earned at 2% compounded continuously.A) \$28,681.85B) \$23,482.71C) \$31,666.67D) \$35,032.09

Find the consumer's surplus f	or the following deman	d function at the given point.		
11) Find the consumers'	surplus at a price level	of $\overline{\mathbf{p}} = \7 for the price-demand	l equation	11)
p = D(x) = 25 - 0.4x.			_	
A) \$405	B) \$720	C) \$29,250	D) \$4050	

Find the producer's surplus for the following supply function at the given point.

12) Find the producers' surplus at a price level of $\overline{p} = \$30$ for the price-supply equation $p = S(x) = 14 + 0.0004x^2$.

Solve the problem.

13) Find the equilibrium quantity if the price-demand equation is $p = D(x) = 23 - \frac{1}{20}x$, and the 13)

price-supply equation is $p = S(x) = 8 + \frac{1}{8,000}x^2$. A) 200 B) 13 C) -600, 200 D) -600

14) Find the consumers' surplus and producers' surplus for $p = D(x) = 71 - \frac{1}{10}x$ and 14)

$p = S(x) = 35 + \frac{1}{20}x.$			
A) CS = \$14,160	B) CS = \$15,160	C) CS = \$2880	D) CS = \$2880
PS = \$1440	PS = \$1440	PS = \$1440	PS = \$1660

Evaluate using integration by parts.

15)
$$\int x^{4} \ln 8x \, dx$$

A) $\frac{1}{5} x^{5} \ln 8x - \frac{1}{25} x^{5} + C$
B) $\frac{1}{5} x^{5} \ln 8x + \frac{1}{25} x^{5} + C$
C) $\frac{1}{5} x^{5} \ln 8x - \frac{1}{30} x^{6} + C$
D) $\ln 8x - \frac{1}{5} x^{5} + C$

16)
$$\int x^{2} e^{2x} dx$$

(A) $\frac{x^{2}}{2} e^{2x} - xe^{2x} + C$
(C) $\frac{x^{2}}{2} e^{2x} - 2xe^{2x} + C$
(D) $\frac{x^{2}}{2} e^{2x} - \frac{x}{2} e^{2x} + \frac{1}{4} e^{2x} + C$

Evaluate using the substitution method.

17)
$$\int \frac{7x^6 dx}{(4+x^7)^4}$$

17) _____

18)
$$\int \frac{13e^{5x}dx}{e^{5x}+1}$$

18) _____

 $19) \int x^4 \sqrt{x^5 + 9} \, \mathrm{d}x$

Evaluate. You MUST show all your work, processed without the use of a calculator. 6

20)
$$\int_{1}^{6} \frac{2x+5}{x^2+5x+1} dx$$
 20) _____

21)
$$\int_{0}^{1} 5x^4 e^{x^5} dx$$

21) _____